

An analytical wargaming approach to cyber deterrence

Abderrahmane Sokri, Ph.D. Defence R&D Canada Centre for Operational Research and Analysis Department of National Defence, Ottawa, Canada

The 13th NATO Operations Research and Analysis Conference Ottawa, 7-9 October 2019

DRDC | RDDC

Outline

Cyber-deterrence

- Forms of deterrence
- Particularity of Cyber-deterrence
- Credibility of Cyber-deterrence

Ways to explore the Cyber-deterrence problem

- Myopic approaches
- Non-myopic approaches

A wargaming approach

- A possible scenario
- A possible execution
- Possible outcomes

• Way ahead

Cyber-deterrence: Forms

- Deterrence is the persuasion/prevention from committing unwanted behaviour by fear of the consequences (DoD, 2008; Taipale, 2010)
- Deterrence manipulates the cost-benefit analysis of would-be attackers (Brantly, 2018; Wilner, 2017)
- Deterrence by punishment uses equivalent retaliation to increase the aggressor's perceived cost
 - Example from the physical world: The use of nuclear weapons
- **Deterrence by denial** uses impenetrability to reduce the aggressor's perceived benefits
 - Example from the physical world: Security mechanisms and higher walls around a critical infrastructure

Cyber-deterrence: Particularity

Deterrence is more complex than in physical domain

- More non-state actors than nation-state actors
- Digital attacks are highly dynamic and imperceptible to the human senses
- Digital attacks go beyond all geographic and political boundaries
- The attribution dilemma Determining who to blame for an attack

(Moisan and Gonzalez, 2017; Wilner, 2017)

Cyber-deterrence: Credibility

- Classical theory of punitive deterrence involves a credible punishment
- The credibility of punishment depends on the blame attribution
- Deterrence by punishment may be very difficult and time-consuming in Cyberspace
- Deterrence by denial does not require the knowledge of potential attackers
- Deterrence by denial may be used to address this situation (Bordelon, 2017)

Ways to explore the Cyber-deterrence problem

Myopic approaches

- Examples include decision-theoretic techniques and simultaneous games
- Players make decisions in isolation
- Players do not observe the outcome of previous actions before responding
- A monotonic relationship between the investment level and the attacker's effort
- The attacker will never be deterred because these approaches lack disclosure mechanisms
- Literature: Gordon and Loeb (2002), Mayadunne and Park (2016)

Non-myopic approaches

- Examples include sequential games with disclosure mechanisms
- Can solve the limitations of the myopic approaches
- Literature: Cavusoglu et al. (2008); Sokri (Forthcoming)

A wargaming approach: A possible scenario

We consider a security game between an attacker *a* (the Red Team) and a defender *d* (the Blue Team) in a cyberinfrastructure system.

Variable	Definition
$T = \{t_1, t_2, \dots, t_n\}$	A set of <i>n</i> targets at risk of being attacked
$c(t_i), i = 1, 2, n$	The defender's cost if the target t_i is successfully attacked
$S = \{s_1, s_2, \dots, s_m\}$	A set of resources to cover the targets
$c(s_i), i = 1, 2, m$	The defender's cost associated with s_i
$S = \{a_1, a_2, \dots, a_l\}$	A set of <i>l</i> types of attacks to attack the targets
$d(a_i), i = 1, 2, l$	The attacker's time to prepare the attack a_i
$p(a_{ij}), i = 1, 2, l$	The probabilities of a successful attack on the target t_j using a_i

A wargaming approach: A possible execution

	Blue Team	Red Team
Objective	To cover the maximum of targets with the minimum total cost	To conduct the maximum of successful attacks in the minimum time possible
At each turn	Publicly releases the level of investment	Reacts with a certain level of willingness- to-attack for each target (in terms of time)
At the end	A correlation coefficient will measure the strength of the relationship between the level of investment and the level of willingness-to-attack	

A wargaming approach: Possible outcomes

- At the end, a correlation coefficient will capture the potential correlation for each game.
- Negative linear correlation
 - When the investment is high, the effort should be low, and deterrence by denial would be effective

Positive linear correlation

The investment would have an opposite effect

A value close to 0

Deterrence by denial would be useless

Way ahead

- The application of the model to a real-world cyber-security problem using real-life parameters,
- Analyzing the interaction between defenders and attackers in dynamic scenarios,
- Assessing the risk to the defender of a disclosure strategy,
- Including deception mechanisms to enhance security,

DRDC | RDDC

SCIENCE, TECHNOLOGY AND KNOWLEDGE FOR CANADA'S DEFENCE AND SECURITY SCIENCE, TECHNOLOGIE ET SAVOIR POUR LA DÉFENSE ET LA SÉCURITÉ DU CANADA

